Abstract

The axial pump operating in the pump-as-turbine mode is a practical and cost-saving alternative suitable for low-head pico hydropower in rural and remote areas that bypasses the need for expensive turbines. Their pump characteristics, however, indicate that efficiency is low in off-design flow rates. Using the computational fluid dynamics, the adjustable inlet guide vanes with five angles (±20°, 0°, ±10°) in front of the impeller of the axial pump have been redesigned and installed specifically to increase the operating range of high efficiency in the pump-as-turbine mode. To validate the simulation method, a prototype of the axial pump was built to measure in the pump mode the pump characteristics including head and efficiency. The results obtained show that the computational fluid dynamics calculated results are in qualitative agreement with the experimental data. In the pump-as-turbine mode, the adjustable inlet guide vanes were found to affect the performance of the axial pump. The most important aspect is that the adjustable inlet guide vanes widen the efficiency range if the inlet guide vane angle is adjusted for different flow rates. For the same situation with negative angles, the efficiency values at the BEP are higher than those with positive angles, where the efficiency around the angle − 10° is the highest. The main reason is that the direction of flow at the impeller-zone exit is guided by the adjustable inlet guide vanes to reduce the energy loss, which can be supported in the view of vector field and energy losses of different parts of pump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.