Abstract

A novel mesoporous carbon (MC) modified carbon paper has been constructed using layer-by-layer self-assembly method and is used as anode in an air-cathode single-chamber microbial fuel cell (MFC) for performance improvement. Using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), we have demonstrated that the MC modified electrode exhibits a more favorable and stable electrochemical behavior, such as increased active surface area and enhanced electron-transfer rate, than that of the bare carbon paper. The MFC equipped with MC modified carbon paper anode achieves considerably better performance than the one equipped with bare carbon paper anode: the maximum power density is 81% higher and the startup time is 68% shorter. CV and EIS analysis confirm that the MC layer coated on the carbon paper promotes the electrochemical activity of the anodic biofilm and decreases the charge transfer resistance from 300 to 99 Ω. In addition, the anode and cathode polarization curves reveal negligible difference in cathode potentials but significant difference in anode potentials, indicating that the MC modified anode other than the cathode was responsible for the performance improvement of MFC. In this paper, we have demonstrated the utilization of MC modified carbon paper to enhance the performance of MFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call