Abstract

To alleviate the effect of solar radiation fluctuation on the solar volumetric reactor, phase change material (PCM) is applied to buffer the temperature vibration and improve the stability of thermochemical reactions. In this work, we analyzed the heat flow and distribution characteristics of the conventional double-walled volumetric reactor filled with PCMs (SVR1). We then proposed a novel solar volumetric reactor design (SVR2) to solve the problems of local high temperature, slow charging-discharging rate, and fluctuating methane conversion in various radiation conditions. The heat and mass transfer model coupled with thermochemical reaction kinetics was established to compare the performance of SVR1 and SVR2 under steady state, heat charging-discharging mode, and actual solar radiation fluctuation, respectively. The results show that compared to SVR1, the maximum temperature of SVR2 decreases by 106.3 K, and the minimum methane conversion rate increases from 77.4% to 93.6% under natural solar radiation fluctuation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call