Abstract

In this paper, we report that the conversion efficiency and spectrum of femtosecond optical parametric amplification (fs-OPA) can be significantly enhanced by employing a compact cascaded femtosecond OPA (CF-OPA) scheme with the self-compensation of the temporal walk-off between two nonlinear gain media. Correspondingly, the gain related temporal contrast can also be improved. The feasibility of the CF-OPA method using three cascaded BBO crystals is numerically and experimentally analyzed. Moreover, by replacing the conventional fs-OPA with the CF-OPA and optimizing the design, the performance of a nonlinear temporal filter combining cross-polarized wave generation and fs-OPA is comprehensively improved. The experimental results demonstrate the superiority of the CF-OPA scheme, which can generate high-performance cleaned pulses at 1 kHz repetition rate with energy of 340μJ, energy fluctuation below 0.9% (RMS), spectral width of 97 nm (FWHM), Fourier-transform-limited pulse width of 12 fs and temporal contrast better than 10-12. To the best of our knowledge, this is the first reported temporal walk-off self-compensated quasi-collinear CF-OPA geometry adopting three cascaded BBO crystals, which can be easily generalized to other wavelengths or nonlinear crystals. The above nonlinear temporal filter with a CF-OPA scheme has the rarest comprehensive parameters, which can provide excellent seed pulses for PW and 10 PW class femtosecond laser systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.