Abstract

In this paper, performance in hybrid solar cells based on ZnO nanorod array (ZnO-NA) is significantly improved by formation of a heterostructured ZnO/CdS-core/shell nanorod array (ZnO-CdS-NA), the CdS shell effects on device performance including charge transport and recombination dynamics are discussed, and a model concerning ineffective polymer phase is proposed for understanding the charge generation upon CdS shell formation. The ZnO-CdS-NAs with varied CdS shell thickness (L) were prepared by depositing CdS quantum dots on the ZnO nanorods in the ZnO-NA. Solar cells were prepared by filling the interspaces between the nanorods in ZnO-NA or ZnO-CdS-NAs with poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV). Compared to MEH-PPV/ZnO-NA devices, both open-circuit voltage (Voc) and short-circuit current (Jsc) in MEH-PPV/ZnO-CdS-NA solar cells were dramatically improved depending on L, resulting in a peak efficiency of ca. 1.23% under AM 1.5 illumination (100 mW/cm2) with a 7-fold incremen...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.