Abstract

Electron and x-ray diffraction are well-established experimental methods used to explore the atomic scale structure of materials. In this work, a computational algorithm is presented to produce electron and x-ray diffraction patterns directly from atomistic simulation data. This algorithm advances beyond previous virtual diffraction methods by utilizing an ultra high-resolution mesh of reciprocal space which eliminates the need for a priori knowledge of the material structure. This paper focuses on (1) algorithmic advances necessary to improve performance, memory efficiency and scalability of the virtual diffraction calculation, and (2) the integration of the diffraction algorithm into a workflow across heterogeneous computing hardware for the purposes of integrating simulations, virtual diffraction calculations and visualization of electron and x-ray diffraction patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.