Abstract
Today many formalisms exist for specifying complex Markov chains. In contrast, formalisms for specifying rewards, enabling the analysis of long-run average performance properties, have remained quite primitive. Basically, they only support the analysis of relatively simple performance metrics that can be expressed as long-run averages of atomic rewards, i.e. rewards that are deductible directly from the individual states of the initial Markov chain specification. To deal with complex performance metrics that are dependent on the accumulation of atomic rewards over sequences of states, the initial specification has to be extended explicitly to provide the required state information. To solve this problem, we introduce in this paper a new formalism of temporal rewards that allows complex quantitative properties to be expressed in terms of temporal reward formulas. Together, an initial (discrete-time) Markov chain and the temporal reward formulas implicitly define an extended Markov chain that allows the determination of the quantitative property by traditional techniques for computing long-run averages. A method to construct the extended chain is given and it is proved that this method leaves long-run averages invariant for atomic rewards. We further establish conditions that guarantee the preservation of ergodicity. The construction method can build the extended chain in an on-the-fly manner allowing for efficient simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.