Abstract
In this paper, we study performance evaluation of workflow-based information systems. Because of state space explosion, analysis by stochastic models, such as stochastic Petri nets and queuing models, is not suitable for workflow systems in which a large number of flow instances run concurrently. We use fluid-flow approximation technique to overcome this difficulty. In the proposed method, GSPN (Generalized Stochastic Petri Nets) models representing workflows are approximated by a class of timed continuous Petri nets, called routing timed continuous Petri nets (RTCPN). In RTCPN models, each discrete set is approximated by a continuous region on a real-valued vector space, and variance in probability distribution is replaced with a real-valued interval. Next we derive piecewise linear systems from RTCPN models, and use interval methods to compute guaranteed enclosures for state variables. As a case study, we solve an optimal resource assignment problem for a paper review process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.