Abstract

Westwood+ TCP is a sender-side only modification of the classic Tahoe/Reno TCP that has been recently proposed to improve fairness and efficiency of TCP. The key idea of Westwood+ TCP is to perform an end-to-end estimate of the bandwidth available for a TCP connection by properly counting and filtering the stream of ACK packets. This estimate is used to adaptively decrease the congestion window and slow-start threshold after a congestion episode. In this way, Westwood+ TCP substitutes the classic multiplicative decrease paradigm with the adaptive decrease paradigm. In this paper we report experimental results that have been obtained running Linux 2.2.20 implementations of Westwood+, Westwood and Reno TCP to ftp data over an emulated WAN and over Internet connections spanning continental and intercontinental distances. In particular, collected measurements show that the bandwidth estimation algorithm employed by Westwood+ nicely tracks the available bandwidth, whereas the TCP Westwood bandwidth estimation algorithm greatly overestimates the available bandwidth because of ACK compression. Live Internet measurements also show that Westwood+ TCP improves the goodput w.r.t. TCP Reno. Finally, computer simulations using ns-2 have been developed to test Westwood, Westwood+ and Reno in controlled scenarios. These simulations show that Westwood+ improves fairness and goodput w.r.t. Reno.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.