Abstract
Massive dredged sludge is being landfilled without effective use due to its high-water content and poor engineering properties, which not only leads to soil resources waste, but also occupies a large amounts of land sources. In this study, ternary stabilizer, including waste phosphogypsum (PG), ground granulated blast-furnace slag (GGBS), and lime (LM) with a mixing proportion of PG: GGBS: LM = 35:60:5, was adopted to improve the mechanical and environmental behaviors of sludge for subgrade filling purpose. The initial water content of sludge was controlled using two different dehydration methods for comparison. A series of laboratory tests, including unconfined compressive strength (UCS), organic matter content, and pH value were tested to understand its physical-mechanical properties. Thereafter, field application model equipped with a mini weather monitoring station was constructed to monitor the influence of solidified matrix on the surrounding water and soil environment. Time -dependent parameters such as plant growth, temperature, humidity, total nitrogen, phosphorus/potassium content, electrical conductivity, and pH value were monitored. Results indicate that the incorporation of PG-GGBS-LM ternary stabilizer significantly improves the mechanical and environmental properties of dredged sludge. The optimal dosage of the ternary stabilizer is 36%, which can result in a UCS value of the 2.0 MPa (slightly higher than ordinary Portland cement) after 28 days of curing. Field application reveals that plants could grow normally in solidified sludge. The environmental related parameters (i.e., total nitrogen, phosphorus/potassium content, electrical conductivity, and pH value) were similar with those in conventional planting soil, suggesting the advantage of the proposed PG-GGBS-LM ternary stabilizer in mechanical, economic and environmental aspects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.