Abstract

Abstract This study evaluates the pavement performance evolution of warm-mix recycled asphalt binders during the secondary service period. Warm-mix recycled asphalt binders with various long-term aging levels and recycling plans were produced by the laboratory simulation method. Conventional physical properties tests, the dynamic shear rheometer test, and the bending beam rheometer test were conducted to measure the performance of recycled binders. Effects of the aging level and recycling plan on the resistance to rutting, fatigue cracking, and low temperature cracking were investigated by statistical methods. It was found that after secondary long-term aging, recycled binders are more resistant to rutting, while they are less resistant to fatigue and low temperature cracking. The modified aging kinetic model can be used to accurately characterize the effect of secondary aging time on rutting or fatigue factors for recycled binders. The resistance of aged binders to fatigue and low temperature cracking is obviously improved by adding the warm mix asphalt additive. By comparison, using styrene butadiene rubber latex enhances the binder performance in almost all aspects. The aging level has a more significant effect than the recycling plan for all performance parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call