Abstract

The utilization of crumb rubber to produce asphalt rubber (AR) for asphalt mixture pavement has been proven to be an economical and environmental way for the disposal of waste tires. As one of the most significant thermosetting polymer modified asphalt with prominent performances, epoxy asphalt (EA) has been widely used on the pavement of steel bridge decks. In present study, the mixture of epoxy oligomer and curing agent was incorporated into AR to prepare epoxy asphalt rubber (EAR). To lower the viscosity of AR, a WMA additive, Sasobit was introduced into AR to prepare Sasobit modified EARs. The effects of Sasobit on the rotational viscosity, glass transition temperature (Tg), damping performance, mechanical properties and phase-separated morphology of the neat EAR were investigated. The inclusion of Sasobit significantly decreased the viscosity of the neat EAR during the whole curing process and prolonged the operational lifetime for asphalt mixture pavement. The addition of Sasobit slightly decreased the Tg of the neat EAR. The Tg of Sasobit modified EARs decreased with WMA additive content increasing. Meanwhile, the presence of Sasobit improved the damping properties of the neat EAR. The existence of Sasobit enhanced the mechanical properties of the neat EAR at lower WMA additive concentration. The mechanical properties of Sasobit modified EARs decreased with increasing WMA additive content. Morphological observations revealed that the phase-separated microstructures of the neat EAR consisted of the dispersed spherical and co-continuous AR particles and the continuous epoxy phase. The existence of Sasobit decreased the number of co-continuous AR particles in the epoxy matrix. In addition, the number of co-continuous AR particles decreased with increasing WMA additive content. The presence of Sasobit decreased the average diameter of the dispersed AR particles and area fraction of AR domains in the neat EAR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.