Abstract

The agricultural sector is the backbone of Indian economy and social development but due to lack of awareness towards crop management, a large number of crops get wasted each year. Automated Systems are required for this purpose. This paper tries to highlight the efficiency of two existing models of deep learning, VGG16 and VGG19 for proper detection of wheat rust disease in the infected wheat crop. These two models use convolutional neural networks for image classification and which can be used to design an intelligent system which can easily detect wheat rust in crop images. This paper basically presents the comparative analysis of the accuracy and efficiency along with usability to select the best model for systems that can be used for crop safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.