Abstract

Glaucoma is the dominant reason for irreversible blindness worldwide, and its best remedy is early and timely detection. Optical coherence tomography has come to be the most commonly used imaging modality in detecting glaucomatous damage in recent years. Deep Learning using Optical Coherence Tomography Modality helps in predicting glaucoma more accurately and less tediously. This experimental study aims to perform glaucoma prediction using eight different ImageNet models from Optical Coherence Tomography of Glaucoma. A thorough investigation is performed to evaluate these models’ performances on various efficiency metrics, which will help discover the best performing model. Every net is tested on three different optimizers, namely Adam, Root Mean Squared Propagation, and Stochastic Gradient Descent, to find the best relevant results. An attempt has been made to improvise the performance of models using transfer learning and fine-tuning. The work presented in this study was initially trained and tested on a private database that consists of 4220 images (2110 normal optical coherence tomography and 2110 glaucoma optical coherence tomography). Based on the results, the four best-performing models are shortlisted. Later, these models are tested on the well-recognized standard public Mendeley dataset. Experimental results illustrate that VGG16 using the Root Mean Squared Propagation Optimizer attains auspicious performance with 95.68% accuracy. The proposed work concludes that different ImageNet models are a good alternative as a computer-based automatic glaucoma screening system. This fully automated system has a lot of potential to tell the difference between normal Optical Coherence Tomography and glaucomatous Optical Coherence Tomography automatically. The proposed system helps in efficiently detecting this retinal infection in suspected patients for better diagnosis to avoid vision loss and also decreases senior ophthalmologists’ (experts) precious time and involvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.