Abstract

Ultra-reliable low latency communications (URLLC) is one of the most important scenarios in 5G. URLLC with strict latency and reliability requirements is widely used in delay-sensitive application such as self-driving. As the 3GPP claims, the URLLC is amenable to 99.999% transmission correctness and within 1ms delay bound. How to meet the requirements of reliability and latency is still an open issue. Few efforts have been made to applying a theoretical method to analyze the delay bound. Stochastic network calculus is an elegant way to obtain the delay bound based on traffic models and service guarantees. In this paper, we take the character of 5G architecture into account and use the stochastic network calculus to analyze the delay in URLLC. A tandem model describing the communication in the 5G network is built, and parameters which have an influence on the delay are analyzed. Numerical results are presented to verify the correctness of the delay analysis. We investigate how to optimize the parameters to reduce the delay, which would provide valuable guidelines for the design of URLLC architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call