Abstract

The aim of this paper is to evaluate performance of new CUDA mechanisms—unified memory and dynamic parallelism for real parallel applications compared to standard CUDA API versions. In order to gain insight into performance of these mechanisms, we decided to implement three applications with control and data flow typical of SPMD, geometric SPMD and divide-and-conquer schemes, which were then used for tests and experiments. Specifically, tested applications include verification of Goldbach’s conjecture, 2D heat transfer simulation and adaptive numerical integration. We experimented with various ways of how dynamic parallelism can be deployed into an existing implementation and be optimized further. Subsequently, we compared the best dynamic parallelism and unified memory versions to respective standard API counterparts. It was shown that usage of dynamic parallelism resulted in improvement in performance for heat simulation, better than static but worse than an iterative version for numerical integration and finally worse results for Golbach’s conjecture verification. In most cases, unified memory results in decrease in performance. On the other hand, both mechanisms can contribute to simpler and more readable codes. For dynamic parallelism, it applies to algorithms in which it can be naturally applied. Unified memory generally makes it easier for a programmer to enter the CUDA programming paradigm as it resembles the traditional memory allocation/usage pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.