Abstract

Abstract Bleach activators decrease the energy consumption and fabrics damage in the process of laundry and industrial cotton bleaching. Herein, we demonstrate a low-cost, two-step method for the synthesis of sodium nonanoyloxybenzene sulfonate and sodium lauroyloxybenzene sulfonate from phenol as a simple precursor material for efficient bleach activators. Initially, phenol was sulfonated to sodium p-phenolsulfonate. In the second step, it was acylated with nonanoyl chloride and dodecanoyl chloride to synthesize sodium nonanoyloxybenzene sulfonate and sodium lauroyloxybenzene sulfonate, respectively. Sodium p-phenolsulfonate and the obtained bleach activators were characterized by thermogravimetric analysis, IR-, and 1H NMR spectroscopy. The investigation of their detergency efficiency on different stains and substrates revealed that the as-synthesized bleach activators outperform the commercial tetraacetylethylenediamine (TAED) at room temperature (25°C). The detergency efficiency of sodium lauroyloxybenzene sulfonate for hydrophobic stains at a rather low temperature of 40°C remarkably rises to about 90%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call