Abstract

Wireless ad-hoc networks are characterized by a collection of wireless mobile nodes that dynamically form a temporary network without the use of any pre-defined network infrastructure or centralized administration. They have attributes such multi-hop wireless connectivity, continuously changing topology and easy deployment. The increasing demands that are made by users pose a challenge in the improvement of the quality of wireless ad-hoc networks. The performance of wireless ad-hoc networks depend on the efficiency of routing protocols, especially the routing metric operating within it. In this paper, the performance of the recently proposed routing metric Interference Bandwidth Adjusted Expected transmission count (IBETX) metric is compared with two prominent existing metrics, the Expected transmission count (ETX) and the Inverse Expected Transmission count (InvETX) over the Destination Sequenced Distance Vector (DSDV) routing protocol. The performance differentials are analysed using varying packet rates and node densities. From the simulations results, IBETX metric outperforms the ETX and InvETX metric because it implements the bandwidth sharing mechanism and makes use of the information available at the MAC layer. It can also be noted that it is very sensitive to data traffic rate. It performs well in low and medium node densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call