Abstract

A new class of space-time codes called super-orthogonal trellis codes was introduced that combine set-partitioning with a super set of orthogonal space-time block codes in such a way as to provide full diversity with increased rate and improved coding gain over previous space-time trellis code (STTC) constructions. Here, we extend the moment generating function-based method, which was previously applied to analyzing the performance of space-time block orthogonal and trellis codes, to the above-mentioned super-orthogonal codes. It is shown that the maximum-likelihood metric and expressions for the pairwise error probability previously developed for the Alamouti (1998) space-time block code combined with multidimensional trellis-coded modulation can be readily extended to the super-orthogonal case. As such, the evaluation of the pairwise error probability for the latter can be performed in a similar manner to that previously described with the specific results depending on the particular trellis code design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call