Abstract

Solar PV pumping system for irrigation purpose has been gained importance in recent times considering its environmental friendly characteristics and to reduce the dependency on fossil fuel based energy sources for pumping. In general, 3 HP and 5 HP capacity solar PV pumping systems are used for irrigation purpose in India. However, large capacity pumps are often also used to lift groundwater resources, which may lead to further depletion of ground water table. Keeping in mind these constraints, performance of small sized solar PV pumps of 1 HP capacity was evaluated to lift and irrigate shallow water resources using pressurized irrigation systems. Experimental observations revealed that 1 HP solar PV pumping system either AC or DC type could successfully be used to operate mini-sprinklers, micro-sprinklers and drippers with good irrigation uniformity. Further, a self-sustainable module for sustainable use of water and energy was designed in which both water and energy are harvested and recycled. Life cycle cost analysis showed that 1 HP (DC) solar PV pumping system was slightly cheaper than corresponding AC pumping system. Even, the carbon footprint of 1 HP solar PV pumping systems is quite lower (0.009 kg CO2-eq ha-mm−1) than grid-connected electric pumps (1.214 kg CO2-eq ha-mm−1) and diesel operated pumps (0.382 kg CO2-eq ha-mm−1). Therefore, 1 HP solar PV pumping systems could be a feasible solution for small and marginal farmers in the context of water scarcity situation in near future and to mitigate the climate change effects in agricultural farms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call