Abstract

In this paper, two types of Silicon (Si) IGBT and Silicon Carbide (SiC) hybrid switch (Si/SiC HyS) based three-level active neutral-point-clamped (3L-ANPC) inverter are proposed for high efficiency and low device cost. The proposed Si/SiC HyS-based 3L-ANPC inverters are compared with the full Si IGBT, full SiC MOSFET, and Si with SiC devices-based hybrid 3L-ANPC solutions on the inverter efficiency, power capacity, and device cost. It is shown that compared with the full Si IGBT 3L-ANPC solution, the inverter efficiency improvement by Si/SiC HyS is 2.4% and 1.8% at light load condition and heavy load condition, respectively. Compared to the full SiC MOSFET solution and 2-SiC MOSFETs hybrid scheme, the device cost of 2-Si/SiC HyS-based 3L-ANPC is reduced by 78% and 50% with 0.28% and 0.21% maximum inverter efficiency sacrifices. The testing results show that the proposed Si/SiC HyS-based 3L-ANPC inverter is a cost-effective way to realize high inverter efficiency. Between the two proposed Si/SiC HyS-based 3L-ANPC inverters, the 2-Si/SiC HyS-based 3L-ANPC inverter has lower device cost which makes it more suitable for cost-sensitive and high efficiency applications. While the 4-Si/SiC HyS-based 3L-ANPC inverter has higher output power capacity, making it a better candidate for high power density, high power capacity, and high efficiency applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.