Abstract

Multipath routing in mobile ad-hoc networks allows the establishment of multiple paths for routing between a source–destination pair. It exploits the resource redundancy and diversity in the underlying network to provide benefits such as fault tolerance, load balancing, bandwidth aggregation and the improvement in quality-of-service metrics such as delay. Previous work shows that on-demand multipath routing schemes achieve better performance under certain scenarios with respect to a number of key performance metrics when compared with traditional single-path routing mechanisms. A multipath routing scheme, referred to as shortest multipath source (SMS) routing based on dynamic source routing (DSR) is proposed here. The mechanism has two novel aspects compared with other on-demand multipath routing schemes: it achieves shorter multiple partial-disjoint paths and allows more rapid recovery from route breaks. The performance differentials are investigated using NS-2 under conditions of varying mobility, offered load and network size. Results reveal that SMS provides a better solution than existing source-based approaches in a truly mobile ad-hoc environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.