Abstract

Abstract This paper presents the steady-state behavior of a series compensated (short-shunt) self-excited six-phase induction generator (SPSEIG) configured to operate as stand-alone electric energy source in conjunction with a hydro power plant. A purely experimental treatment is provided with the emphasis placed on operating regimes that illustrate the advantages of using SPSEIG. In particular, it is shown that the SPSEIG can operate with a single three-phase capacitor bank, so that the loss of excitation or fault at one winding does not lead to the system shutdown. The generator can also supply two separate three-phase loads, which represent an additional advantage. Experimental results include loading transients with independent three-phase resistive and resistive–inductive load at each of the two three-phase winding sets, and measured steady-state characteristics for various load and/or capacitor bank configurations. Practical results for long-shunt configuration are also given for comparative performance evaluation of series compensated SPSEIG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call