Abstract

PurposeThe purpose of this study is to address a highly heterogeneous rift margin environment and exhibit considerable spatiotemporal hydro-climatic variations. In spite of limited, random and inaccurate data retrieved from rainfall gauging stations, the recent advancement of satellite rainfall estimate (SRE) has provided promising alternatives over such remote areas. The aim of this research is to take advantage of the technologies through performance evaluation of the SREs against ground-based-gauge rainfall data sets by incorporating its applicability in calibrating hydrological models.Design/methodology/approachSelected multi satellite-based rainfall estimates were primarily compared statistically with rain gauge observations using a point-to-pixel approach at different time scales (daily and seasonal). The continuous and categorical indices are used to evaluate the performance of SRE. The simple scaling time-variant bias correction method was further applied to remove the systematic error in satellite rainfall estimates before being used as input for a semi-distributed hydrologic engineering center's hydraulic modeling system (HEC-HMS). Runoff calibration and validation were conducted for consecutive periods ranging from 1999–2010 to 2011–2015, respectively.FindingsThe spatial patterns retrieved from climate hazards group infrared precipitation with stations (CHIRPS), multi-source weighted-ensemble precipitation (MSWEP) and tropical rainfall measuring mission (TRMM) rainfall estimates are more or less comparably underestimate the ground-based gauge observation at daily and seasonal scales. In comparison to the others, MSWEP has the best probability of detection followed by TRMM at all observation stations whereas CHIRPS performs the least in the study area. Accordingly, the relative calibration performance of the hydrological model (HEC-HMS) using ground-based gauge observation (Nash and Sutcliffe efficiency criteria [NSE] = 0.71; R2 = 0.72) is better as compared to MSWEP (NSE = 0.69; R2 = 0.7), TRMM (NSE = 0.67, R2 = 0.68) and CHIRPS (NSE = 0.58 and R2 = 0.62).Practical implicationsCalibration of hydrological model using the satellite rainfall estimate products have promising results. The results also suggest that products can be a potential alternative source of data sparse complex rift margin having heterogeneous characteristics for various water resource related applications in the study area.Originality/valueThis research is an original work that focuses on all three satellite rainfall estimates forced simulations displaying substantially improved performance after bias correction and recalibration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.