Abstract

This study aims to assess the performance of routing protocols in Intelligent Transportation System (ITS)-based vehicular networks, specifically in accident and highway scenarios. The effective management of traffic flow in these situations is crucial for ensuring the safety and smooth operation of vehicular networks. Therefore, it is imperative to evaluate routing protocols to identify the most suitable one for these scenarios. The evaluation considers various commonly used routing protocols in vehicular networks, including Ad hoc On-Demand Distance Vector (AODV), Ad hoc On-Demand Multipath Distance Vector (AOMDV), and Destination-Sequenced Distance Vector (DSDV). The evaluation is based on several performance metrics, such as packet delivery ratio, end-to-end delay, network throughput, normalized routing load, and routing overhead. These metrics provide insights into the effectiveness and efficiency of the routing protocols in handling re-routing in accident and highway scenarios. The research is divided into two modules, Module I and Module II, to evaluate the effectiveness of routing protocols in these distinct scenarios using the NS2 simulation tool. The simulation results are analyzed and compared to determine the performance of the routing protocols in each module. The findings indicate that AODV consistently achieves the highest throughput, packet delivery ratio, and lowest end-to-end delay, routing overhead, and normalized routing load, followed by AOMDV and then DSDV. The findings of this study contribute to the understanding of the strengths and weaknesses of different routing protocols in accident and highway scenarios. This knowledge can assist in the development of more efficient and reliable routing protocols for vehicular networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call