Abstract

With the development of real-time precise clock and orbit products, high-precision real-time ionospheric products have become one of the most critical resources for real-time single-frequency precise point positioning. Fortunately, there are several international GNSS service (IGS) analysis centers, e.g., UPC, WHU, and CAS, that are providing real-time global ionospheric maps (RT-GIMs). We evaluate these maps in detail over 2 years for different aspects. First, the RT-GIMs and 1-day predicted ionospheric products (C1PG GIM) differenced with the IGS final GIMs (IGSG GIM) are performed. Second, ionospheric vertical total electron content from Jason-2/3 data is set as a reference to evaluate the quality of RT-GIMs over oceanic regions. Third, 22 stations, which are not used in the generation of RT-GIMs, C1PG GIM, and IGSG GIM, are selected and the difference of slant total electron content (dSTEC) method is used to assess the accuracy and consistency of RT-GIMs over continental regions. Finally, the performance of RT-GIMs in the position domain is demonstrated based on SF-PPP solutions. The results show that the accuracy of the RT-GIMs is slightly worse than that of C1PG GIM and IGSG GIM. All RT-GIMs and the C1PG GIM have a smaller mean difference compared to the IGSG GIM by (−0.97, − 0.90, − 0.77, − 0.80) TECU for (UPC RT-GIM, CAS RT-GIM, WHU RT-GIM, C1PG GIM). Over oceanic regions, the RT-GIMs perform nearly the same as the C1PG GIM, but a slightly worse than IGSG GIM. The STDs are (3.96, 3.05, 3.25, 3.12, 2.54) TECU relative to Jason-2 and (4.94, 3.24, 3.38, 3.24, 2.65) TECU relative to Jason-3 for (UPC RT-GIM, CAS RT-GIM, WHU RT-GIM, C1PG GIM, IGSG GIM), respectively. Comparing with dSTEC values observed from the selected ground stations over continental regions, the RMS is (4.02, 2.16, 2.29, 1.86, 1.49) TECU for (UPC RT-GIM, CAS RT-GIM, WHU RT-GIM, C1PG GIM, IGSG GIM). In the position domain, the positioning accuracy of SF-PPP solution corrected by the RT-GIMs and C1PG GIM can reach decimeter level in the horizontal direction and meter level in the vertical direction, which is worse than obtained by IGSG GIM. Meanwhile, the positioning accuracy of SF-PPP corrected by RT-GIMs is almost the same as that obtained using C1PG GIM. For RT-GIMs, the accuracy of the CAS RT-GIM is slightly better than that of the other two RT-GIMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call