Abstract

Pump and treat (P&T) is a technology that has been extensively used to remove and/or contain contaminated groundwater. P&T systems conventionally operate continuously, which requires significant amounts of energy. The use of renewable energies to meet power demands of remedial systems may reduce a project’s carbon dioxide emissions. This paper analyzes the performance of a hypothetical photovoltaic (PV)–powered P&T system that operates both intermittently by assuming that the system does not include an energy storage component and continuously by assuming that the system includes a relatively small capacity energy storage component using widely available Typical Meteorological Year 3 (TMY3) data. The results are compared against a baseline case of continuous pumping at a constant rate using volume of groundwater removed and capture zone width. The comparison shows that the cost-benefit of increasing the capture zone widths and volume of extracted groundwater by increasing the rated flow rate is greater than by including a relatively small-capacity energy storage component. PV-powered P&T system performance, without or with limited relatively small-capacity energy storage, is conditioned to site-specific hydrologic and seasonal characteristics. The methodology presented in this paper can be used to assess and compare the performance of each alternative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.