Abstract

Polyvinylchloride (PVC) membranes were modified by blending with polyacrylonitrile (PAN) as a second polymer. The miscibility of PVC/PAN blend was examined using an incompressible regular solution (CRS) model in no need to make a membrane. The results showed that the PVC/PAN blend was immiscible for all compositions at a temperature range of −25 to 225 °C. Furthermore, the prediction of the phase behavior of a PVC/PAN/DMF ternary system showed that the blend of two polymers was highly incompatible even in their common DMF solvent. However, this incompatibility led to a remarkable increase in the porosity of the blend membrane and pure water flux compared to those for pure PVC membrane. The pure water flux of the PVC membrane (37.9 ± 1.5 L/m2 h) increased about 41 and 76% by adding 10 and 20 wt% PAN, respectively. The blend membranes also showed an enhanced flux recovery ratio (FRR) compared to a pure PVC membrane, although the PVC membrane rejection for Bovine serum albumin (BSA) was decreased after blending with PAN. The PVC/PAN (90/10) blend membrane was subjected to hydrolysis with NaOH alkaline solution at three different concentrations and contact times to further enhance its performance. The membrane, which was hydrolyzed with a 0.5 mol/L NaOH solution for 0.5 h, showed a highest pure water flux of 75.6 ± 7.2 L/m2 h due to its increased hydrophilicity. This membrane also revealed an improved FRR and better thermal and mechanical properties compared to an unmodified membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call