Abstract

In recent years, much High Performance Computing (HPC) researchers attract to utilize Field Programmable Gate Arrays (FPGAs) for HPC applications. We can use FPGAs for communication as well as computation thanks to FPGA's I/O capabilities. HPC scientists cannot utilize FPGAs for their applications because of the difficulty of the FPGA development, however High Level Synthesis (HLS) allows them to use with appropriate costs. In this study, we propose a Communication Integrated Reconfigurable CompUting System (CIRCUS) to enable us to utilize high-speed interconnection of FPGAS from OpenCL. CIRCUS makes a fused single pipeline combining the computation and the communication, which hides the communication latency by completely overlapping them. In this paper, we present the detail of the implementation and the evaluation result using two benchmarks: pingpong benchmark and allreduce benchmark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.