Abstract
This study investigated photocatalytic degradation of pharmaceutical compound using CuO or PdO-TiO2 membrane. The synthesized membranes were characterized by some techniques including X-ray powder diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FT-IR). The structural properties confirmed that the photocatalytic membranes were successfully prepared on ceramic supports. The PdO-TiO2 and CuO-TiO2 membranes were employed as photocatalytic membranes to degrade metronidazole (MNZ) and diphenhydramine (DPH) in aqueous solutions, respectively. Some parameters affecting the photocatalytic reaction such as pH, initial concentration, and light source were also investigated. The maximum degradation for both pharmaceutical compounds was obtained at basic pH (pH = 10), low initial concentration (C0 = 10ppm) under UV irradiation. At high transmembrane pressure (ΔP = 3bar), the flow rate across the membrane increased up 0.0078 and 0.0082cc/s.cm2 for CuO-TiO2 and PdO-TiO2 photocatalytic membrane respectively while not affected on degradation efficiency (DE). At the same condition operation (C0 = 10ppm, pH = 10, ΔP = 2bar under UV irradiation), the MNZ and DPH degradation of the PdO-TiO2 membrane was 94 and 95% respectively that relatively higher than the CuO-TiO2 membrane. It is probably due to the lower energy band gap of PdO-TiO2 (2.5eV) than CuO-TiO2 (2.7eV). The membrane stability tests confirmed the high performance of the prepared membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Health Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.