Abstract

This paper describes a performance evaluation study in which some efficient classifiers are tested in handwritten digit recognition. The evaluated classifiers include a statistical classifier (modified quadratic discriminant function, MQDF), three neural classifiers, and an LVQ (learning vector quantization) classifier. They are efficient in that high accuracies can be achieved at moderate memory space and computation cost. The performance is measured in terms of classification accuracy, sensitivity to training sample size, ambiguity rejection, and outlier resistance. The outlier resistance of neural classifiers is enhanced by training with synthesized outlier data. The classifiers are tested on a large data set extracted from NIST SD19. As results, the test accuracies of the evaluated classifiers are comparable to or higher than those of the nearest neighbor (1-NN) rule and regularized discriminant analysis (RDA). It is shown that neural classifiers are more susceptible to small sample size than MQDF, although they yield higher accuracies on large sample size. As a neural classifier, the polynomial classifier (PC) gives the highest accuracy and performs best in ambiguity rejection. On the other hand, MQDF is superior in outlier rejection even though it is not trained with outlier data. The results indicate that pattern classifiers have complementary advantages and they should be appropriately combined to achieve higher performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.