Abstract

Motivated to investigate the thermal–hydraulic characteristics and performance of a passive containment cooling system (PCS) for a Generation III pressurized water reactor (PWR), a coupled RELAP5/GOTHIC model was developed, which was then employed to simultaneously simulate the transient responses of the PCS and the containment during a large break loss of coolant accident of the reactor. The results show that the PCS is capable of lowering the containment pressure to an acceptable level for a long period (up to 3days). In a separate-effect study, it was found that the height of the PCS loop plays an important role in determining the flow characteristics and heat removal performance of the PCS. Within the range of the considered loop heights, phase change occurs in the riser of the loop after the height exceeds a specific value (between 13m and 15m), below which only single-phase flow takes place. With increasing height of the loop, the heat removal capability increases monotonically at first; however, it is no longer sensitive to the height after two-phase flow appears. Finally, a feed-and-bleed operation for the cooling tank of the PCS was proposed as an enhancement measure of the heat removal capacity, and the simulation results show it further mitigates the accident. Moreover, a simplified analytical model is developed to predict the impact of the feed-and-bleed flowrate on the PCS performance, which can be used in engineering design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call