Abstract

A series of novel, nonionic gemini surfactants (GSs) with varying spacer lengths were synthesized from sunflower (Helianthus) oil for application in enhanced oil recovery (EOR). The surfactants were characterized by 1H-NMR and thermogravimetric analyses (TGA). Critical micelle concentration values increased with temperature due to a delay in micellization of GS molecules in bulk phase. Hydrolytic stability studies revealed that GS solutions possess the ability to displace acidic crude oil through reservoir pores. Crude oil miscibility studies showed the formation of stable emulsion systems. Ultralow interfacial tension was achieved at the oil–aqueous interface in the presence of salt. Surfactant solutions exhibited good tolerance to varying salinity and hardness conditions. GS solutions showed favorably low lime soap dispersion requirement, indicating improved dispersing ability. GS-based foam systems showed enhanced kinetic stabilities with increasing concentration and pseudoplastic flow character that a...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call