Abstract
We evaluate the performance of two LaBr3(Ce) crystals that were produced with special geometries, aimed at enhancing the scintillation light collection and thus the time resolution. Their design was motivated by the construction of high-performance fast-timing arrays like the FAst TIMing array for DESPEC (FATIMA), which demands a high packing factor in addition to good time and energy resolutions.Energy resolution and efficiency were measured using standard calibration sources. Timing measurements were performed at 60Co and 22Na γ-energies against a fast BaF2 reference detector. The time resolution was optimized by the choice of the photomultiplier bias voltage and the fine tuning of the constant fraction discriminator parameters. Monte Carlo simulations using the Geant4 toolkit were performed in order to achieve a better understanding of how the new geometries affect the light transport and thus the performance of the crystals. It is found that the conical-shaped LaBr3(Ce) crystals are optimal for fast-timing applications and for the construction of arrays such as FATIMA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.