Abstract

Starting with the birth of Web 2.0, the quantity of data managed by large-scale web services has grown exponentially, posing new challenges and infrastructure requirements. This has led to new programming paradigms and architectural choices, such as map-reduce and NoSQL databases, which constitute two of the main peculiarities of the specialized massively distributed systems referred to as Big Data architectures. The underlying computer infrastructures usually face complexity requirements, resulting from the need for efficiency and speed in computing over huge evolving data sets. This is achieved by taking advantage from the features of new technologies, such as the automatic scaling and replica provisioning of Cloud environments. Although performances are a key issue for the considered applications, few performance evaluation results are currently available in this field. In this work we focus on investigating how a Big Data application designer can evaluate the performances of applications exploiting the Apache Hive query language for NoSQL databases, built over a Apache Hadoop map-reduce infrastructure.This paper presents a dedicated modeling language and an application, showing first how it is possible to ease the modeling process and second how the semantic gap between modeling logic and the domain can be reduced, by means of vertical multiformalism modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.