Abstract

Multi-epoch double-differenced pseudorange observation (MDPO) is a dual-satellite lunar navigation algorithm specially designed for a precursor mission, using a minimum number of lunar orbiting small satellites to realize a GNSS-like radio navigation system for the Moon. In this study, we evaluated the performance of the MDPO algorithm by using real pseudorange measurements obtained from a pair of GNSS ground stations, one of which represented a lander, and the other a rover on the Moon. It was natural that the resulting positioning accuracy varied largely by satellite geometry, but the estimated error distributions of the double-differenced pseudorange observations were consistent and agreed with the predicted value. The results showed that the MDPO algorithm worked properly with the real GNSS observables and was capable of providing the expected navigation performance for future lunar exploration missions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.