Abstract

Wireless sensor networks (WSNs) typically consist of sensor nodes and gateways that operate on devices with limited resources. As a result, WSNs require bandwidth-efficient and energy-efficient application protocols for data transmission. Message Queue Telemetry Transport (MQTT) and Constrained Application Protocol (CoAP) are two such protocols proposed for resource-constrained devices. In this paper, we design and implement a common middleware that supports MQTT and CoAP and provides a common programming interface. We design the middleware to be extensible to support future protocols. Using the common middleware, we conducted experiments to study the performance of MQTT and CoAP in terms of end-to-end delay and bandwidth consumption. Experimental results reveal that MQTT messages have lower delay than CoAP messages at lower packet loss rates and higher delay than CoAP messages at higher loss rates. Moreover, when the message size is small and the loss rate is equal to or less than 25%, CoAP generates lower additional traffic than MQTT to ensure message reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.