Abstract

An experimental verification of a damage detection process using novel optimization techniques such as modified real coded genetic algorithms and swarm-based algorithms is presented. Here, the objective function is defined as the sum of differences of the modal frequencies between intact and stiffness damaged state, which has to be minimized to identify the damage location and its severity in the process of model updating. In addition to the structural or damage variables such as the mass or stiffness of the numerical model, the profiles of modal frequency shifts are also damage-sensitive features. The iterative process that uses the proposed population-based optimization algorithms successfully identifies the local mass change of a test structure by updating the damage variables to fit the modal data of test structures such as a cantilevered beam and multibay truss frame. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.