Abstract
Abstract: Email is one of the most popular modes of communication we have today. Billions of emails are sent every day in our world but not every one of them is relevant or of importance. The irrelevant and unwanted emails are termed email spam. These spam emails are sent with many different targets that range from advertisement to data theft. Filtering these spam emails is very essential in order to keep the email space fluent in its functioning. Machine Learning algorithms are being extensively used in the classification of spam emails. This paper showcases the performance evaluation of some selected supervised Machine Learning algorithms namely Naive Bayes Classifier, Support Vector Machine, Random Forest, & XG-Boost for spam email classification on a combination of three different datasets. For feature extraction, both Bag of Words & TF-IDF models were used separately and performance with both of these approaches was also compared. The results showed that SVM performed better than all the other algorithms when trained with TF-IDF feature vectors. The performance metrics used were accuracy, precision, recall, and f1-score, along with the ROC curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.