Abstract
Manual microscopy of Gram stains from positive blood cultures (PBCs) is crucial for diagnosing bloodstream infections but remains labor intensive, time consuming, and subjective. This study aimed to evaluate a scan and analysis system that combines fully automated digital microscopy with deep convolutional neural networks (CNNs) to assist the interpretation of Gram stains from PBCs for routine laboratory use. The CNN was trained to classify images of Gram stains based on staining and morphology into seven different classes: background/false-positive, Gram-positive cocci in clusters (GPCCL), Gram-positive cocci in pairs (GPCP), Gram-positive cocci in chains (GPCC), rod-shaped bacilli (RSB), yeasts, and polymicrobial specimens. A total of 1,555 Gram-stained slides of PBCs were scanned, pre-classified, and reviewed by medical professionals. The results of assisted Gram stain interpretation were compared to those of manual microscopy and cultural species identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The comparison of assisted Gram stain interpretation and manual microscopy yielded positive/negative percent agreement values of 95.8%/98.0% (GPCCL), 87.6%/99.3% (GPCP/GPCC), 97.4%/97.8% (RSB), 83.3%/99.3% (yeasts), and 87.0%/98.5% (negative/false positive). The assisted Gram stain interpretation, when compared to MALDI-TOF MS species identification, also yielded similar results. During the analytical performance study, assisted interpretation showed excellent reproducibility and repeatability. Any microorganism in PBCs should be detectable at the determined limit of detection of 105 CFU/mL. Although the CNN-based interpretation of Gram stains from PBCs is not yet ready for clinical implementation, it has potential for future integration and advancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.