Abstract

To improve the performance of conventional double-effect absorption refrigeration systems (DEARS), new series parallel (SP) and reverse parallel (RP) configurations using LiCl-H2O and LiBr-H2O as working fluids, combined with two vapor compressors (VC), are proposed and thermodynamically evaluated. The effects of the distribution ratio (D) and compression ratio (CR) on the system performance are discussed. The results reveal that both configurations can extend the operation ranges of DEARS effectively at a higher distribution ratio, and the performance for low-grade heat source utilization is improved substantially by the use of VC. The compressor positioned between the evaporator and absorber is superior to that between the high-pressure generator and low-pressure generator because of the better performance improvement and larger operating ranges. In all the examined cases, LiCl-H2O systems perform better than LiBr-H2O systems in terms of the coefficient of performance (COP) and exergetic efficiency. At the higher CR of approximately 2, the compression-assisted DEARS can be driven by heat sources below 100 °C with high levels of COPs above 1.16 for the LiBr-H2O working pair and 1.29 for the LiCl-H2O working pair. The system can operate at the optimum condition by adjusting the CR values according to the characteristics of the heat sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call