Abstract

The capacity control of a vapor-compression refrigeration system is investigated by injecting hot gas and liquid refrigerant into the suction side of the compressor. Three different possibilities for the by-pass schemes are investigated for HFC-134a by considering finite size of the components that are used in the refrigeration systems. The model considers the finite-temperature difference in the heat exchangers, thus allowing the variations in the condenser and evaporator temperatures with respect to capacity and external-fluid inlet temperatures. It is demonstrated that the compressor discharge temperatures increase significantly when the hot-gas from the compressor discharge is extracted and injected (without any liquid injection) directly into the suction side of the compressor. A comparative study is also performed of these schemes in terms of the system coefficient of performance (COP), operating temperatures and the refrigerant by-pass fraction as a function of the percentage capacity reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.