Abstract
Effective job scheduling scheme is a crucial part of complex heterogeneous distributed systems. Gang scheduling is a scheduling algorithm for grid systems that schedules related grid jobs to run simultaneously on servers in different local sites. In this paper, we address grid jobs (gangs) schedule modeling using Stochastic reward nets (SRNs), which is concerned for static and dynamic scheduling policies. SRN is an extension of Stochastic Petri Net (SPN) and provides compact modeling facilities for system analysis. Threshold queue is adopted to smooth the variations of performance measures. System throughput and response time are compared and analyzed by giving reward measures in SRNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.