Abstract

The modified moments method for evaluating the performance of coherent optical FSK and CPFSK systems is presented. Since the classical procedure becomes ill-conditioned as the order of the moments increases, we consider the construction of Gaussian quadrature rules (GQR) from the modified moments. The analysis accounts for the influences of IF bandwidth, transmitter and local oscillator laser phase noise, postdetection filters, and additive Gaussian noise. It is found that the proposed approach is a highly reliable and efficient method for calculating the error probability. A comparison with results obtained from the Gaussian quadrature rule, Gaussian approximation method, and analytical approximation formulas shows that this technique is very accurate. Analytical expressions are derived for FSK and CPFSK receivers which include polarization and phase diversity techniques. The use of numerical programming to avoid many unnecessary computations is discussed. This evaluation method can be used to account for the effects of crosstalk in multichannel systems and the influence of error-control codes.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.