Abstract
Face biometric system is one of the successful applications of image processing. Person recognition using face is the challenging task since it involves identifying the 3D object from 2D object. The feature extraction plays a very important role in face recognition. Extraction of features both in spatial as well as frequency domain has more advantages than the features obtained from single domain alone. The proposed work achieves spatial domain feature extraction using Asymmetric Region Local Binary Pattern (ARLBP) and frequency domain feature extraction using Fast Discrete Curvelet Transform (FDCT). The obtained features are fused by concatenation and compared with trained set of features using different distance metrics and Support Vector Machine (SVM) classifier. The experiment is conducted for different face databases. It is shown that the proposed work yields 95.48% accuracy for FERET, 92.18% for L-space k, 76.55% for JAFFE and 81.44% for NIR database using SVM classifier. The results show that the proposed system provides better recognition rate for SVM classifier when compare to the other distance matrices. Further, the work is also compared with existing work for performance evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Network and Information Security
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.