Abstract

The enhanced tear film evaporation and diminished tear production causes a dry eye (DE) condition. A non-invasive infrared (IR) thermography is most commonly used as a diagnostic tool for diagnosis of DE. However, the availability of high-quality IR thermal camera at low cost is difficult. Hence, an efficient DE detection system which can perform efficiently by using low-cost and low-quality images instead of conventional IR images would be a significant contribution. Therefore, in this work, we have evaluated the performance of automated non-invasive DE detection system using low-quality images obtained by adding different levels of noise to high-quality IR images. In this work, the performances of two non-linear higher-order spectra (HOS) cumulants and bispectrum features are compared. These features are extracted from the IR images with different levels of Gaussian noise. Principal component analysis (PCA) is performed on these extracted features and they are ranked using [Formula: see text]-value and later fed to different classifiers. We have achieved the accuracies, sensitivities and specificities of: (i) 86.90%, 85.71% and 88.10%, with noise level 0 using 24 bispectrum features, and (ii) 80.95%, 85.71% and 76.19%, with noise level 10 using 15 bispectrum features for right eye IR images. This study exhibits that even in the presence of high levels of noise, the detection of DE is possible and our proposed method performs efficiently using HOS bispectrum features. Thus, our proposed method can be used to detect DE using low-quality and inexpensive cameras instead of high-cost IR camera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.