Abstract

This paper studies the life-cycle performance and cost of reinforced concrete highway bridges subjected to earthquake ground motions while they are continuously exposed to the attack of chloride ions. The penetration of chloride ions into the concrete is simulated through a finite difference approach that takes into account all the parameters that can affect the corrosion process. From simulation results, the corrosion initiation time is predicted, and the extent of structural degradation is calculated over the entire life of the bridge. A group of detailed bridge models with various structural attributes are developed to evaluate the changes in the structural capacity and seismic response of corroded bridges. For the purpose of the probabilistic seismic risk assessment of bridges, the seismic fragility curves are generated and updated at regular time intervals. The time-dependent fragility parameters are employed to investigate the life-cycle cost of bridges by introducing a performance index that combines the effects of probable seismic events and chloride-induced corrosion. The proposed approach provides a multihazard framework that leads to more realistic performance and cost estimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call