Abstract

Lock-stitch embroidery has been the centre of much interest as a versatile and precise method of producing conductive tracks in the fabrication of wearable electronic devices. However, improper fabrication parameter settings could result in the nonconformity of the conductive tracks and damage the conductive coating of the conductive yarns. In this study, we evaluate the appearance quality, dimensional stability and electrical resistance of conductive tracks by taking into account the embroidering speed (ES), stitch length (SL), needle thread pre-tension (NTP) and embroidering direction (ED). The conductive tracks are embroidered onto knitted fabric in different directions with silver-coated polyamide yarn as the needle thread. The results show that stitching the conductive tracks in the wale direction results in a more uniform stitch lines in comparison to the other directions. To resolve the problem of floated stitches, it is recommended that an SL of 4 mm and a higher NTP are used. The percentage of shrinkage in the wale direction is lower than in the course direction. The electrical resistance of the conductive tracks increases with a higher ES and shorter SL. It is also found that a thicker yarn is more sensitive to the NTP and some of the silver coating is rubbed off with an NTP of 50 gf. We also carry out an overlay plot analysis, through which we predict and validate the optimal embroidery parameters that balance appearance quality and electrical resistance. The technique parameters in this study can be used to embroider conductive tracks for smart clothing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call