Abstract

The rapid development of Internet of Things (IoT) technology has provided ample opportunity for the implementation of intelligent agricultural production. Such technology can be used to connect various types of agricultural devices, which can collect and send data to servers for analysis. These tools can help farmers optimize the production of their crops. However, one of the main problems that arises in agricultural areas is a lack of connectivity or poor connection quality. For these reasons, in this paper, we present a method that can be used for the performance evaluation of communication systems used in IoT for agriculture, considering metrics such as the packet delivery ratio, energy consumption, and packet collisions. To achieve this aim, we carry out an analysis of the main Low-Power Wide-Area Networks (LPWAN) protocols and their applicability, from which we conclude that those most suited to this context are Long Range (LoRa) and Long Range Wide Area Network (LoRaWAN). After that, we analyze various simulation tools and select Omnet++ together with the Framework for LoRa (FLoRa) library as the best option. In the first stage of the simulations, the performances of LoRa and LoRaWAN are evaluated by comparing the average propagation under ideal conditions against moderate propagation losses, emulating a rural environment in the coastal region of Ecuador. In the second phase, metrics such as the package delivery ratio and energy consumption are evaluated by simulating communication between an increasing number of nodes and one or two gateways. The results show that using two gateways with the Adaptive Data Rate technique can actively increase the delivery ratio of the network while consuming the same amount of energy per node. Finally, a comparison is made between the results of the simulation scenario considered in this project and those of other research works, allowing for the validation of our analytical and simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.