Abstract
AbstractThe present study evaluates the performance of high‐resolution global climate models derived from Coupled Model Intercomparison Project Phase 6 (CMIP6 HighResMIP), in simulating rainfall characteristics over Madagascar on an annual and seasonal scales for the period 1981–2014. The models and their ensemble mean are assessed based on two observational datasets sourced from Climate Hazards Group Infrared Precipitation with Station data version 2 (CHIRPS v2.0) data and the European Centre for Medium‐Range Weather Forecasts (ECMWF) reanalysis fifth generation‐Land dataset (ERA5) as the references throughout the diverse analyses. A Taylor diagram, accompanied by the Taylor skill score (TSS), is used for the annual and seasonal model‐rankings and the overall performance of the models. The best‐performing models are EC‐Earth3P‐HR, ECMWF‐IFS‐HR, ECMWF‐IFS‐LR and HadGEM3‐GC31‐MM. The least‐recommended models with remarkable biases are BCC‐CSM2‐HR, CAMS‐CSM1‐0, FGOALS‐f3‐H, MPI‐ESM1‐2‐HR and MPI‐ESM1‐2‐XR. It is worth mentioning that FGOALS‐f3‐H tends to overestimate rainfall in most analyses, while MPI‐ESM1‐2‐HR and MPI‐ESM1‐2‐XR underestimate it. The findings of this study are of great importance to climatologists and present an opportunity for further investigation of underlying processes responsible for the observed wet/dry biases in order to improve the forecast skills in the models over the study area.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.